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Spoiling the Whole Bunch: Quality Control Aimed
at Preserving the Integrity of High-Throughput Genotyping

Anna Pluzhnikov,1,6 Jennifer E. Below,2,6 Anuar Konkashbaev,1 Anna Tikhomirov,1

Emily Kistner-Griffin,4 Cheryl A. Roe,5 Dan L. Nicolae,1,2,3 and Nancy J. Cox1,2,*

False-positive or false-negative results attributable to undetected genotyping errors and confounding factors present a constant challenge

for genome-wide association studies (GWAS) given the low signals associated with complex phenotypes and the noise associated with

high-throughput genotyping. In the context of the genetics of kidneys in diabetes (GoKinD) study, we identify a source of error in geno-

type calling and demonstrate that a standard battery of quality-control (QC) measures is not sufficient to detect and/or correct it. We

show that, if genotyping and calling are done by plate (batch), even a few DNA samples of marginally acceptable quality can profoundly

alter the allele calls for other samples on the plate. In turn, this leads to significant differential bias in estimates of allele frequency

between plates and, potentially, to false-positive associations, particularly when case and control samples are not sufficiently random-

ized to plates. This problem may become widespread as investigators tap into existing public databases for GWAS control samples. We

describe how to detect and correct this bias by utilizing additional sources of information, including raw signal-intensity data.
The results reported here were obtained in the QC phase of

data analysis from the GoKinD study comprising DNA

samples and more than 300 dichotomous and quantitative

variables related to nephropathy (the primary phenotype),

neuropathy, retinopathy, and cardiovascular disease; these

data were collected from more than 1,800 probands with

long-standing (10þ years) type 1 diabetes (T1D). After

selection for GWAS by the Genetic Association Informa-

tion Network (GAIN),1 the DNA samples were distributed

across 34 plates and genotyped on the Affymetrix

Genome-Wide Human SNP Array 5.0 platform (see Web

Resources). Probands were screened into two primary

phenotype categories: those with definitive kidney disease

(cases) and those without (controls). In addition, DNA and

phenotype data were collected from parents of 582

probands. Altogether, more than 3,000 samples were avail-

able for genotyping. The data on a subset of 1,825 individ-

uals containing genotype calls in ~460K SNPs, primary

phenotypes, and raw probe intensity (.CEL) files were

made available in September of 2007 to qualified investiga-

tors through dbGaP2 (see Web Resources) after NIH review

of the investigator request form.

The high cost of such large-scale sample and phenotype

collection and genotyping, the recognition that genetic

risk factors for phenotypes corresponding to diabetic

complications are expected to be of the same low to

moderate magnitude as those estimated for other complex

phenotypes,3 and the fact that the GoKinD study will be

a widely used public resource highlight the importance

of thorough QC testing. Although the significance of QC

analysis has been noted in several GWAS3–5 and a number

of steps6–9 have emerged as a guideline for QC of GWAS,

addressing QC in the context of data obtained from
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a public source is somewhat different from conducting

QC in an experiment that is totally under the control of

the investigator. In the former, the investigator has no

input on decisions made previously, such as the choice of

platform, allele-calling algorithm, allele-calling protocol

(e.g., calling genotypes over the entire sample, smaller

batches, or by plate), or the randomization of subjects

across plates. Although quality public resources, such as

dbGaP, provide detailed information on experimental

design as well as probe-intensity data (e.g., .CEL files gener-

ated by the Affymetrix platforms) and thus facilitate the

development of innovative QC methods, this is by no

means a universal practice in current data-sharing proto-

cols. Our goal is to maximize quality, and elucidate limita-

tions, of data obtained from such sources outside of the

control of the investigator.

The QC analysis for GoKinD was carried out both at

NCBI with the GAINQC software package (see Web

Resources) prior to data release and by individual investiga-

tors. Alleles were called in batches by plate at the Broad

Institute with the Birdseed version 2 software10 (see Web

Resources). Filtering criteria applied to SNPs in the full

GoKinD data included a call rate >95%, an HWE test

p value >10�7, and a number of Mendelian incompatibil-

ities <3. Genotyped SNPs that had a known physical

map position and that passed these QC filters (427,350)

were used in subsequent analyses. Summary statistics

based on the filtered data, as well as results of a plate-effect

test for assessing heterogeneity in allele frequencies across

plates, were also made available to investigators requesting

GoKinD data.

It was apparent from the beginning that the QC at NCBI

might not have been sufficient to identify and correct all
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Figure 1. Q-Q Plots of the �log10(p
Value) for the Plate and Primary-Pheno-
type Association Test
The 1 df plate effect (top row) and pheno-
type association (bottom row) are shown
under the following three QC scenarios:
(A and D) standard QC, (B and E) standard
QC plus removal of the problem samples,
and (C and F) standard QC plus removal
of the problem samples and recall of the
affected plate. Triangles at the top of the
plot represent p values< 10�7. The shaded
region corresponds to the 95% concentra-
tion band as computed by the func-
tion qq.chisq of the R package
snp.matrix (see Web Resources).
data problems: the quantile-quantile (Q-Q) plot of the

observed versus expected p values for the allelic tests of asso-

ciation in nephropathy cases and controls showed a notable

excess of significant p values at or below the level of 10�4

(Figure 1D). Because the initial QC tests of GoKinD data at

NCBI were performed with all available samples (including

related and duplicated individuals and those with different

self-reported ethnicity), we chose to repeat the analyses cor-

recting for these potential biases and conduct several addi-

tional QC tests. Moreover, the plate-effect test was based on

the GAINQC allelic association test with n � 1 degrees of

freedom (df), where n is the total number of plates (n ¼ 34

in our case). Hence, although this test has identified

a number of SNPs with heterogeneity in allele-frequency

estimates across all plates, it was inappropriate for identi-

fying SNPs with biased allele frequencies on a single plate.

Therefore, we also designed a different test for plate effect.

We began with a set of unrelated probands who reported

themselves to be of recent European ancestry, and we pro-

ceeded with those samples that achieved a call rate of

>90% (1,661 of the original sample of 1,825) because

many of the QC studies use allele frequencies estimated

from the data in subsequent calculations, and sample

substructure can yield misleading results.11 As might be

expected in a data set this large, sex misspecifications

(two) and either duplicates or close relatives (eight, with

a pairwise proportion of identity by descent [IBD] estimate

bpR0:25) were identified with PLINK12 options sex-
check and genome, respectively, and removed, leaving

1651 samples for subsequent analyses. We also used PLINK

to estimate call rates by individual and by SNP, to calculate

average heterozygosity bH (across all SNPs) for each

individual, and to assess the fit of the observed genotype

distributions for each SNP to those expected under Hardy-

Weinberg equilibrium (HWE) (Figure S1 available online).
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We conducted plate-effect tests for

each plate separately by comparing

allele frequencies estimated for the

samples from a single plate to those

estimated for all other samples. Each

of these tests is a c2 test with 1 df, as
opposed to the 33 df test run at NCBI, and therefore is

more appropriate for pinpointing problems with a partic-

ular plate. We identified plate 4RWG569 as having contrib-

uted disproportionately to the excess of significant plate-

effect p values (Figure 1A); in particular, 732 autosomal

SNPs were significantly associated (p value < 10�7) with

it, in stark contrast to the rest of the plates, in which the

median number of plate-associated SNPs at the level of

10�7 or below was equal to four. In plate-effect analyses,

as well as in the subsequent analysis of the primary pheno-

type, we employed a basic test of allelic association as im-

plemented in PLINK. SNPs with minor allele frequency

(MAF) <1% and X-linked SNPs were omitted.

We also discovered a pattern of genetically impossible

relationships among a set of eight individuals; any pair of

individuals in the set had a bp value of just under 0.25, and

estimated probabilities P(IBD ¼ 2) z 0.25, P(IBD ¼ 1) z 0,

and P(IBD ¼ 0) z 0.75. The bH values were significantly

higher for these same individuals (on average, 42% versus

32% for the rest of GoKinD subjects, leading to a two-

sample t test p value <10�13). In addition, these eight

individuals were estimated to be related to all other indi-

viduals in the sample at about the level of a second cousin

(P(IBD¼ 2) z 0, P(IBD¼ 1) z 0.25, and P(IBD¼ 0) z 0.75;

bpz0:125). A key observation was that all eight samples in

question were genotyped on the same plate, 4RWG569.

A preliminary GWA analysis of the nephropathy pheno-

type conducted on the 1651 samples comprising 804 cases

and 847 controls also revealed an excess of SNPs with asso-

ciation p value of <10�4. Moreover, we observed three

SNPs (denoted as triangles on Figures 1D and 1E) meeting

genome-wide criteria for significance (p value < 10�8).

Notably, all of these SNPs had significantly different esti-

mates of allele frequency on plate 4RWG569 than on other

plates (p value < 10�200).
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Figure 2. Normalized Signal-Intensity Plots Showing Allele-Frequency Distortion Caused by the Cluster of Problem Samples
The top row corresponds to the original assignment of genotypes on the plate; the bottom row corresponds to the same plate recalled
without the problem samples. The SNPs were chosen to have a highly significant plate bias in the original data (p value < 10�11).
(A) A typical configuration for a failed Sty SNP in which only the eight problem samples were assigned incorrect genotypes (included
for comparison). The other plots represent several configurations leading to genotype misspecifications for the entire plate: (B) an Sty
SNP, (C) an Nsp SNP, (D) an Nsp/Sty SNP with the effect similar to an Nsp SNP, and (E) an Nsp/Sty SNP showing the effect of a single
sample misclassified as a new cluster. The SNP in (D) is one of three that meets genome-wide criteria for significance (p value < 10�8)
in the original data.
We hypothesized that the eight ‘‘problem’’ samples were

likely to have contributed to the excess of significant asso-

ciation with the primary phenotype (Figure 1D) because all

of them were assigned a nephropathy case status. However,

removing them from the analysis did not correct the

problem. After the eight samples were removed, the overall

excess of SNPs associated with both primary phenotype

and plate was largely unchanged (Figures 1B and 1E),

although the total number of SNPs with highly significant

(p value < 10�7) allele frequency differences on plate

4RWG569 dropped to 28 (from 732).

To helpelucidate the source of differential allele frequency

bias, we constructed cluster plots for the 28 SNPs with stron-

gest plate association by using normalized allele intensities

(so-called allele A and B signals). We obtained the allele A

and B signals from available .CEL files by using the apt-
probeset-genotype application of the Affymetrix

Power Tools (APT) software package (see Web Resources).

On the basis of our analysis of cluster plots, we concluded

that the reason behind the differential plate bias was

extreme allele frequency distortion in genotype calls for all

samples on this plate and that this distortion was caused

by abnormal clustering of the eight poor-quality samples.

Typical patterns of MAF distortion are shown in Figures

2B–2E; the remaining cluster plots appear in Figure S2, avail-

able online.

Differential genotyping bias has been shown to drive the

false-positive rate in previous studies;13,14 here we found

that the distortion in genotype calls was exacerbated by

the imbalance of cases (83 out of 86 samples) on the plate.
The A
This combination led to the excess of false-positive signals in

the primary phenotype analysis. In order to correct this bias,

we had to recall the genotypes for all samples on the after

removing the eight bad ones. The subsequent test for plate

and genotype association and primary phenotype GWA

study showed marked improvement in the number of false

positives (Figures 1C and 1F): only five SNPs crossed the

threshold for significant plate association, which is consis-

tent with chance variability, and the overall excess of signif-

icant signals, including evidence for genome-wide signifi-

cantassociations with nephropathy, disappeared (Figure 1F).

Because of how dramatically a small number of low-

quality samples within an otherwise high-quality set called

by plate can affect genotype calls, it is critical to identify

poorly performing samples before genotypes are called

even when the source of the quality problem in the

samples is not immediately obvious. Although the normal-

ized allele intensities proved indispensable in pinpointing

the source of differential bias, these alone are not sufficient

to allow detection of the problematic samples prior to

allele calling and, in fact, may look misleadingly ‘‘normal’’

(see Figure S3) even for the most egregious samples.

Instead, we resorted to using raw (pre-normalized) inten-

sity data.

Two methods of identifying and filtering out low-quality

DNA samples prior to allele calling were applied to GoKinD

data. The first method, referred to as Contrast QC (CQC),

was developed by Affymetrix in the context of QC assess-

ment of the SNP Array 6.0 data and implemented in

the Genotyping Console (GTC) 2.1 and APT packages
merican Journal of Human Genetics 87, 123–128, July 9, 2010 125
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Figure 3. Log-Transformed Probe-Intensity and -Contrast
Distributions for the Samples on Plate 4RWG569
The top row corresponds to the panel of Nsp-specific SNPs, and the
bottom row corresponds to the panel of Sty-specific SNPs. Solid
black curves represent the eight samples with Sty target-prepara-
tion failure. In addition to these, one more sample identified by
SQC and CQC as failing on both Sty and Nsp panels appears in
all four plots and is especially evident in (A) and (B).
(application apt-geno-qc). For each SNP, a CQC

metric defined as a function of the allelic contrast

a ¼ IA � IB

IA þ IB

measures the extent of separation of allele intensities into

three clusters of AA, AB, and BB genotypes. Here, IA and IB
are the median raw intensity values for the allele A and B

probeset, respectively. CQC summary scores are calculated

for four pre-selected panels: a random set of 9,340 SNPs for

testing the overall quality of the sample, two sets of 20,000

enzyme-specific (Nsp or Sty) SNPs, and a set of 20,000 SNPs

occurring on both Nsp and Sty fragments. The enzyme-

specific panels appear to have been selected to include

the tails of the distribution of the restriction fragment

lengths for the entire set of enzyme-specific SNPs (see

Figure S4) so that the information obtained from a smaller

set of SNPs can be maximized. According to the Affymetrix

white paper (see Web Resources), CQC score values below

0.4 correspond to insufficient cluster separation and thus

to a low call rate. In addition, a difference of 2.0 or greater

between the enzyme-specific scores indicates a possible

single-enzyme target preparation failure. We employed

the latter feature to detect problems with sample quality

prior to recalling genotypes.

In order for the application to work with the GoKinD

SNP Array 5.0 data, the .QCC library file containing pre-

selected panels of Array 6.0 SNPs was modified to include

only a subset of the panel SNPs represented on the SNP

Array 5.0 platform such that on the 5.0 platform these

SNPs were assayed with a probe pair from the same strand

and offset (such probes are so-called paired probes). The re-

sulting SNP Array 5.0 ‘‘partial’’ .QCC file contains 3,147

random, 3,532 Nsp-only, 2,952 Sty-only, and 4,477 Nsp/

Sty SNPs. We also constructed a ‘‘full’’ .QCC file based on

the information on SNP and enzyme pairing available in

the NetAffx annotation file and replaced the panel sets

with their counterparts from the entire collection of paired

probes. Both the partial and the full .QCC files are available

upon request from the authors.

The second test, referred to as Skewness QC (SQC), is

based on the asymmetry of the log-transformed distribu-

tion of IA and IB values measured by Pearson’s skewness

coefficient S ¼ ðmean�medianÞ=SD, where mean, median,

and SD are calculated over the combined set of log-trans-

formed IA and IB values. We applied this test to the

enzyme-specific SNP panels defined above and observed

that typical values of s lie in the range of �0.1 < s < 0.1;

outliers are mostly in the direction of high positive s (skew-

ness to the right), corresponding to an excess of low-inten-

sity probes. If both sNsp and sSty have this property, it might

indicate an overall low sample quality or, if only one of the

enzyme-specific scores is out of bounds, a single target-

preparation failure. Note that the range of values of s is

clearly specific to the data and SNP panel; hence, the

threshold of 0.1 above should not be viewed as a universal

cutoff but rather as a suggestive value.
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We applied SQC and CQC tests to the GoKinD data by

using both the partial and full SNP panels (for results, see

Table S1). In all four scenarios, the eight problem samples

were successfully identified as having a single-enzyme (Sty)

target preparation failure, which probably caused the

majority of Sty-specific SNP probes to display low signal

intensity (that is, the low signal detected was actually

just background noise) (Figures 3C and 3D). This had

a profound impact on the genotype calls, not only for

the affected Sty SNPs (Figures 2A and 2B) but also, surpris-

ingly, for the Nsp and Nsp/Sty SNPs as well (Figures 2C and

2E): because probes from the same chip were normalized

together, the failed Sty-specific ones pushed some of the

moderate-intensity Nsp probes corresponding to heterozy-

gous genotypes to the upper tail of the distribution. This

created an artificial new cluster of homozygous genotypes,

which are especially evident in Figures 2C and 2D, top row,

and completely absent in Figures 2C and 2D, bottom row.

As a result, the cluster that would otherwise be assigned

a common homozygous genotype was misclassified as

heterozygous; with even more severe consequences, the

cluster of heterozygous genotypes was misclassified as

homozygous for the rare allele. Thus, for these SNPs not

only the genotypes for the problem samples but also the

genotypes for the rest of the samples on the plate were

grossly misspecified. Recalculating PLINK estimates of

average heterozygosity and IBD proportions for Sty- and

Nsp-specific SNPs separately confirmed (Table 1) that Sty

failure was probably responsible for the deviations

observed in these characteristics for the eight problem

samples.
10



Table 1. The Effect of Sty-Specific SNP Failure on the Estimates of Average Heterozygosity bH and Pairwise IBD Proportions bp

Enzyme- Specific
SNP Set

Average Heterozygosity cH Average Pairwise Proportion of IBD bp

Within the
Problem Samples

Within Other
Samples

Within the
Problem Samples

Between the Problem
and Other Samples

Within Other
Samples

Sty 0.704 5 0.002 0.317 5 0.005 0.952 5 0.004 0.320 5 0.074 0.015 5 0.013

Nsp/Sty 0.400 5 0.003 0.319 5 0.005 0.147 5 0.005 0.102 5 0.011 0.007 5 0.008

Nsp 0.309 5 0.003 0.321 5 0.006 0.0 5 0.0 0.0 5 0.0 0.008 5 0.011
In addition to the eight samples discussed above, a few

others were identified as having failed for one or both

enzymes (see Table S1). These additional failed samples

were distributed one or two per plate and did not alter

the overall allele calls sufficiently to show plate effects

above background. However, our collective experience

with GWAS QC suggests that as few as one failed sample

can lead to altered allele calls for an entire plate; moreover,

in some GWAS where genotypes were called over the entire

sample, we observed (data not shown) that failed samples

from different plates could cluster together and, hence,

lead to a similar genotype-call distortion, this time

affecting the entire study. Thus, it is imperative to identify

and remove all failed samples (whatever the cause and

number) before genotype calling. We also note that the

GoKinD data set, and others on which we have conducted

QC studies, have plate effects that we have been unable to

explain. The magnitude of these plate effects is sufficiently

large and the observation sufficiently common to justify

more research in this area.

In conclusion, our studies suggest that it is often insuffi-

cient to simply remove samples lying outside common

quality-control thresholds. Such actions might fail to iden-

tify—or fix—more fundamental problems affecting much

more of the data, and removal of just the poorest-quality

samples might make it more difficult to identify the actual

cause of the problems. Clearly, unusual patterns of related-

ness and outlier heterozygosity rates across SNPs can be

useful clues about underlying data-quality problems that

might extend beyond those samples, and the one-degree-

of-freedom test for differential plate bias in allele-

frequency estimates is a useful approach for identifying

plates with potentially problematic data. Proper experi-

mental design, such as randomizing cases and controls to

plates, would also have attenuated the most egregious of

the effects that the plate bias caused in the primary associ-

ation analyses. The resulting higher genotype error rate in

cases and controls would be expected to both reduce power

and increase the number of false-positive associations. In

addition, genotyping error could be detected and poten-

tially accounted for by the use of duplicate genotyp-

ing.15–17 However, because many current GWAS are de-

signed to make use of samples from public databases,

investigators obtaining such data rarely have input into

the design of the original study or access to intended dupli-

cate genotypes. And so, for many investigators, recalling

genotypes after detecting and removing failed samples
The A
remains the most effective way of eliminating this source

of genotyping bias.

Conducting association studies in which genotype data

for cases and controls have been generated at different

genotyping centers and/or at different times certainly

enhances the opportunity for plate biases in allele

frequency estimation to generate higher rates of false-posi-

tive results. It is therefore critical for both individual inves-

tigators and public data resources to keep and make

publicly available all of the data needed to assign

genotypes, particularly the probe-intensity files. Ideally,

those responsible for releasing data publicly would re-

examine data released before such measures were available

and analyze the probe-intensity data by using the CQC or

SQC (or similar) measures to identify samples that might

have a compromised genotype assignment, remove poor-

quality samples, and recall genotypes as indicated.

At the least, maintaining and/or providing upon request

pre- and post-normalization intensity data will ensure

that investigators are able to identify and correct data-

quality problems that might impact the entire sample

but that are not recognized until after analysis. Similarly,

both standard reports from genotyping centers and publi-

cations should include information on the allele- calling

algorithm and version used for generating the genotype

data, as well as metrics (such as CQC or SQC) used for

determining which samples should be included in allele

calling.
Supplemental Data

Supplemental Data include four figures and one table and are

available with this article online at http://www.cell.com/AJHG/.
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Web Resources

The URLs for data presented herein are as follows:

Genome-Wide Human SNP Array 5.0, http://www.affymetrix.

com/products_services/arrays/specific/genome_wide/

genome_wide_snp_5.affx

NetAffx annotation file for Genome-Wide Human SNP Array 5.0,

http://www.affymetrix.com/support/technical/byproduct.

affx?product¼genomewidesnp_5

dbGaP, http://www.ncbi.nlm.nih.gov/sites/entrez?db¼gap

Affymetrix Power Tools, http://www.affymetrix.com/support/

developer/powertools/index.affx

snpMatrix, http://www.bioconductor.org/packages/2.3/bioc/

html/snpMatrix.html

GainQC, http://www.sph.umich.edu/csg/abecasis/GainQC/

index.html

CQC white paper, http://www.affymetrix.com/support/technical/

whitepapers/genotyping_console_cqc_whitepaper.pdf
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